LIMITED CATHODE PROCESSES UNDER CONDITIONS OF
A POWERFUL PULSE DISCHARGE

A. G. Goloveiko and S. P. Rzhevskaya UDC 537.50

We examine the thermophysical processes at the initial and final stages of a pulse through
joint consideration of surface evaporation and thermal field emission as cooling effects and
the effects of all heat sources acting on the cathode.

In comparison with the anode, the role of the cathode in the development and maintenance of dis-
charge is more significant. Functioning as a collector of positive ions, the cathode at the same time ap-
pears as a powerful emitter of electrons, as a consequence of which we have a two-component current in
the zone of the cathode potential drop (j¢ = je + jj). The space discharge of the latter, as demonstrated
by Mackeown [1] excites an electric field at the cathode surface, i.e.,

E? = 7.57- 10U [(/p) — 1] Jo» w
where ¢ and ¢, denote j; /je and (me /m1)1/2~

In the initial stage of the pulse, whenthe cathode temperature remains quite low, the cathode spot un-
der the action of the cited field may function only as a cold emitter. This means that the density of the
electron component of the cathode current must be subject, in this case, to the Nordheim —Fowler equa-
tion [2],i.e.,

je = (1.55-107°E%/¢) exp [— 6.85-107 ¢*?0 (y)/E], 2)

where the dimensionless function v(y), correct to 0.1%, may be approximated — as assumed by Andreev {3]
- by the expression

v(y) = 0.965 — (1.05 - 107E/¢?). 3)
(The quantity jg, Ug, E, and ¢ in (1)-(3) must be expressed, respectively, A/em?, V, V/cm, and eV.)

Equations (1) and (2) include the three quantities E, i, and je which are functions of the pulse regime,
or what is the same, the equations include E, ¢, and jo, where jo = (1 + {)je. Eliminating E from (1)-(3),
we can derive a separate equation for the two remaining quantities:

Jic =A(l + w)/[(lb/%) - 1] {B +1In [(‘p/‘l’o) — 1} }2, (4)

where the constants A = 5.80 -109<p3/U33/2 and B = 0.157 + (7.2/ (pl/z) +1n (U}:/z/ @) have individual values
for the various metals. Data on these metals are presented in Table 1, on the basgis of the experimental
estimates of U, based on the work Kesaev [4].

The results from the solution of (4) and (1) are shown in Fig. 1, which illustrates the functional rela-
tionship between E, ¢, and j, over a rather broad range of pulse regimes. As we can see from the figure,
with a change in the density of the cathode spot the coefficient y changes within extremely broad limits.
Since it determines the relative value of the ion current which transmits the thermal surface effect to the
cathode, it is clear that these variations in the coefficient will be markedly reflected in the thermophysical
process of the cathode at the initial stage of the pulse.

The density of the ion heat flow transmitted to the cathode is determined [5] from the expression
Fi=p (L + 04+ 9= W0+l +n+ Ui (5)
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TABLE 1. Values of the Constant A, B, and ¢, for Certain Metals

Metals ‘ cd Zn l Al Cu l w
1
A 9,32.1010 7,75-1010 6,32-101°0 9,97.1010 1,31.1011
B 3,75 3,91 4,11 3,76 3,44
Yo 2,25.107% | 2,92.10-3 4,48.1073 2,96-10-3 1,73.10-8

where the sum of the relative coefficients = 2kT;/eU¢ and v = U;j /Ug assumes a value no larger than
0.3-0.5, while the expression i (1 + 77 + p) ranges within the limits of 1.2 to 1.5 for the various metals.

With a one-dimensional approximation of the thermophysical process for a semibounded cathode
(0 =x' = =) the thermophysical problem at the initial stage of the pulse can be formulated, as follows from
[6], in the following manner:

aT (¢, 1) PT (¥, 1) A
= K by LMo B e
ot ¢ ox' + bl ox’ + “e
aT (0, t) ..
N (ER TR LAY G)
T (o, ¢ ’
—a—(‘g%_}_ = 0; T(x H O) = Tl)v (7)

in which we have taken into consideration all of the heat sources: the surface source, and the Lenz —Joule
and Thomson volume sources. Here the quantities @ = A/cy, u = p/ cy,and b = T2\ /e )L, can be treated
as constants, for which we can limit ourselves to their average values in the temperature range for the
initial pulse stage (up to the cathode melting point Tmp),

Problem (6)-(7) can be presented in dimensionless form

0(E 1 _ PE, 1) a0 (5, v)
. o + B P + 1, (8)
a0 (0, T)=_ . 30 (o0, T) —0 _
. g % 0; 8, 0)=0, 9

where
E=Ag vy t=A" g=4 W1+ pd+n+v)
06 O = [T, ) =To|/(Tpp—Toh A = [w/a(Ty,—~To]"%
Ay = [a/Mu (Tnp—T)|"% B = A (Tinp—T)-
The values of the individual characteristics Af,Ar, Ay, and B for the metals are given in [6]. Here we will
point out only that for the various metals A¢ varies from 1077 to 107 m/A; Ar varies from 10718 to 10716

m?/ A% gec; A varies from 1 to 10 V™1 and, finally, the dimensionless coefficient B varies from 1072 to
107t

Together with (8), it is a good idea to consider yet another two equations for the same boundary and
initial conditions (9),i.e.,

M(E, 7 _ PG D

= P +1, (10)
00E v _0E, 1) (1
v og? ,

in the first of which the Thomson heat source has been eliminated, while the Thomson and Lenz —Joule heat
sources have been eliminated in the second.

Problem (11), (9) determines the temperature field which arises at the cathode under the exclusive
action of the surface heat source. The temperature at the cathode surface, according to this problem, is
determined by the equation

00, 1) = 2qv"*/a'?, (12)
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from which we find the instant of time 7jat which we attain the
melting point 6(0, T(')) =1

T = /4% (13)

This time can assume values of TE, > 1 only when q < 7?1/2,

which is possible only in the region of extremely high current

densities, when jg 2 10° A/cm?. Ahead of this region we have
1

Ty << 1.

20!

Problem (10), (9) determines the temperature field at the
cathode, produced as a consequence of the combined effect of
surface heat sources and the Lenz—Joule volume heat sources,
with the Thomson heat source eliminated. The temperature at
the cathode surface, according to this problem, is expressed by
the equation

8(0, )= (2¢7"%/=" + . (14)
R ? If the process is considered at the instant T(’) in (13), the dif-
v, i 0% ‘ / 0 ference between the temperatures in (14) and (12)
Fig. 1. Functional relationships be - A8, (0, ) =1, (15)

tween E (V/cm), ¥, and j, (A/cm?)
for certain metals when the catbode
is operating in the field-emission
regime.

determines the additional development of the temperature gener-
ated at the instant 7( by the Lenz —Joule heat source. In the
region of those pulse regimes in which 75 < 1, we have A8,(0,
Tg) < 1. In this case, the additional rise in temperature is quite
insignificant, which points up the ineffectiveness of the Lenz
—Joule heat source. However, in the region of high current densities 7¢ 2 1, which means that A9,(0, T})

Z 1. Under these conditions, the effectiveness of this heat source becomes significant.

Instead of the instant 7, for the following we should isolate the instant Ty at which the melting point
0(0, 7) = 1 at the cathode surface is attained as a result of the combined effect of the surface and Lenz
—Joule heat sources. From (14) we find

=14 @gm) {1 — [1 + (=/g%)] 7). 1)

With g > 7T1/2 Eq. (16) changes into (13), i.e., 76 = T(',. However, in the region of high current densities,
when g < 7T1/2, Eq. (16) does not coincide with (13), i.e., we have T, < 7.

Problem (8), (9) determines the temperature field at the cathode under the combined action of all
three heat sources. The temperature at the cathode surface, according to this problem, is determined by
the expression

_ 200 T V(BT B By (=B
80, 1= v 2 n@2n+1) Vw E nl

n=0

_ B
@+t 2" 17)

Since B < 1, when 7 =1 we can limit ourselves to the zeroth approximation
8(0, 1) = (2gt"%/x'"*) — (Bgr/2) [1 + (B1//3)] + . (18)
The difference between the temperatures of (18) and (14) at the instant 7; determines the effect of
the Thomson heat source
A8, (0, 7o) = — (Bgty/2) [1 + (Bry*/3x"%) | (19)

on the surface temperature of the cathode, generated by the remaining heat sources. This is a negative
effect; however, its significance is quite unimportant. Indeed, when q > 7'/ %, we have 7, « 1. It follows
from (19) that A8,(0, 7o) < 0.22B, and since B « 1, we have Afy(0, T7j) < 1. When q < 1r1/2, we also have

Ty < 1, which for B « 1, as before, yields A6,(0, 1) < 1. All of this indicates the relatively weak effective-
ness of the Thomson heat source, regardless of the pulse regime.

Thus, in the initial stage of the pulse, in a region of current densities that are not too high, the ther-
mophysical process at the cathode is determined exclusively by the surface heat source. However, with
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Fig. 2. Functional correspondence between the quantities jo (A/cm?), j; (A/cm?), ¢, E (V/em), and T (°K)
in the high-temperature region for a steady-state regime of a cathode spot of copper (a), tin (b), and
silver (e): 1,2,3) values of h = 5, 10, and 20 ym.

transition to a region of high current densities, because of the pronounced drop in the coefficient ¥, condi-
tions arise at the cathode under which the Lenz —Joule heat source may attain equivalent effectiveness — or
even exceed the effectiveness — that is comparable to the surface heat source. This detail is an individual
specific feature of the cathode alone, because no such phenomenon occurs at the anode [6]. As regards the
Thomson heat source, the cathode does not provide conditions which lend themselves to its effective ap-
pearance.

On the basis of recent research, extremely high cathode current densities on the order of 107-108
A/ cm? are characteristic [7, 8] of powerful pulse and arc discharge. Under these conditions, as follows
from (16), the melting point is reached within 1078-107% sec. On conclusion of this initial phase, a further
intensive rise in temperature is unavoidable, because there are no physical factors preventing this de-
velopment of the process. It cannot be prevented by discrete migration of the cathode spot, since its re-
tention at a single spot will substantially exceed the time indicated.

A further rise in temperature involves three newly generated specific features of the process: in-
tensive surface evaporation; the penetration of the evaporation front into the depth of the cathode; and the
change from field emission to thermal field emission. The power loss to evaporation and thermal field
emission increases with a rise in temperature, which, in the final analysis, leads to a balance between these
sources and the heat sources active at the cathode. In other words, with the passage of some period of in~
tervening time, the thermophysical process changes into a steady-state regime.

If we eliminate the Thomson heat source from (6) and transform the latter to a movable coordinate
system x = X' —vt associated with the evaporation front, we can formulate a problem which yields a fully
satisfactory one-dimensional approximation of the cathode thermophysical process which has gone over
into a steady-state regime:

d2T (%) ar(x) , .
a o + v It + u]c2 exp(—6x) =0, (20)
dT (0) dT (o)
— = o (F,~F —F . =271 0,
dx (Fy=Fo = Fr)/acy, dx (1)

T@©Q)=T; T(o)=T,,

where Fj is the ion heat flux (5), while Fg and Fy, are the power losses as a result of thermal field emission
and evaporation:
F,=(p —e”*E'? 4 2kT) ] /e;
Fo =ur,; (22)
v = v,exp (— T,/7).
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In (20) the quantity uj;"3 represents the power of the volume source at the evaporation front, while exp (—6x)
is a function approximating the power distribution from this source with respect to the coordinate. If we
assume that u = ump[l + a(T — Tmp)] and 6 =h™!, where h is the depth of the experimentally observed
cathode microlunes, the approximation of this heat source w(x) in the form

(%) = 1+ @ (T — Ty )] 12 €% (— 61) (23)
can be regarded as quite reliable.

In the high-temperature region the radiation power losses Fp = 0T attain very high values; how-
ever, they nevertheless remain several orders smaller than the losses due to evaporation and thermal field
emission. Since FT « Fp and FT < Fg, the radiation under boundary condition (21} is eliminated and not
treated in the following.

The solution of {20)-(21) is known [5], and we will present it here in somewhat altered form:
[ry+ ¢, (T —Ty)] vyexp(— Ty, /T)
3/2 172 . .
=lbp A +n+ VG —o— ePE” + _)e jo + [(1+ WP ey 18] [1+a(T —T )] (24)

where the thermal field-emission current j, in the temperature region under consideration is subject to
the Murphy —Good equation [9, 10]

jo= AT*(g/sin §) expz, (25)

in which § = 1.64-102E¥4/T; = ~(1.16 - 10'¢ — 4.39EY )/ T; A = 120 A/ cm? - deg?, if jo- E,and ¢ are,
respectively, expressed in A/cm?, V/cm, and eV.

Equation (24) expresses the law of the conservation of energy for the steady-state regime that is
applicable to the cathode in conjunction with two other equations —Eqgs. (1) and (25) — the first of which de~
termines the electric field at the cathode surface, while the second gives the thermal field emission. The
system of three equations (1), (24), and (25) contains four quantities jg, ¥, E, and T which are functions
of the discharge regime. When reliable data are at hand with respect to any of these quantities, the three
remaining quantities corresponding to the first can be found from the solution of the indicated system.
However, the most recent information on any of these quantities is quite inadequate, particularly for a
powerful pulse discharge.

Under these conditions, it is advisable to specify one of the quantities within rather broad limits and
instead of a uniquely defined solution to derive a single-valued functional correspondence. From consider-
ations of convenience, in this paper we have chosen — for this purpose —a temperature whose value is speci-
fied within the limits of applicability for (25); in this case, the system of Eqs. (1), (24), and (25), as a trans-
cendental system and one that is particularly cumbersome for primitive calculations, has been solved for
a number of metals on a computer.

The data shown by the curves correspond to a steady-state regime; when this state is reached, the
evaporation intensity rises to such a high level that discharge in the cathode vapors not only becomes pos—
sible, but unavoidable. The formal condition for this process reduces to the fact that the yield factor vy
= Gy, /Gj should not be smaller than unity, i.e.,

Yni = (€Go/j;) exp (— T,/ T)- (26)

Assuming vy; =1, from this condition and the data in Fig. 2 we can determine the required tempera-
ture Ty, beginning from which discharge is possible in the cathode vapors when the cathode spot is in a steady
state. Withh =5, 10, and 20 pm, the temperature T for Ag is, respectively, equal to 4600, 4300, and 4200°K,
it is equal to 4800, 4600, and 4400°K for Cu, and the corresponding figures for Sn are 5900, 5500, and
5200°K. However, for a powerful pulse discharge, when the removal of the vapor phase from the cathode
zone is particularly extensive, the condition v,; = 1 is exceedingly inadequate. Under similar circum-
stances we should have the condition v,; > 1, which requires temperatures T >T;. However, we do not
know the extent to which the temperature region T > T, extends, nor whether or not it has an upper limit.

There are two possible approaches to the solution of the problem which has arisen heve. First of
all, we can assume that in the ionization space above the cathode spot there are conditions which impose
some upper bounds on Ypj and that this in turn will determine the upper limit of the temperature. However,
it may also be assumed that in the case of a powerful pulse discharge the limit conditions will not appear
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in the ionization space, but directly on the cathode spot itself. This standpoint, as shown by computer data,
is based on more solid physical ground.

As can be seen from Fig. 2, with a rise in the temperature to some limit value T = T,, the quantities
 and E diminish to values of § = yjand E ~ 0, whereas the thermal field emission current j, rises without
interruption to its upper limit and simultaneously changes into a thermoelectron current. The latter, when
T = T,, must break off because of the disappearance of the cathode potential drop (U, = 0), as well as be-
cause of the possibility of the formation of a barrier field, should the temperature T, be exceeded even
slightly. (The values of T, in Fig. 2 correspond to the points of intersection for the curves of E on the
temperature scale.)

The abrupt termination of the current when T = T, results in the unavoidable explosion of the cathode
spot and its existence as an electron emitter. Such a final explosive effect is thermal in nature and asso-
ciated with the volume superheating which is begun during the life of the cathode spot (grad T(0) > 0!) and
then intensifies as the current comes to an end. The physical nature of such an explosive process is covered
in detail in [11].

The existence of a powerful pulse discharge in the cathode vapors is thus possible only for a tem-
perature range Ty =T =T, bounded from below and from above. The density of the cathode current in this
range of temperatures varies for the different metals (Fig. 2) between 107 and 108 A/ cem?, which does not
contradict the experiment. At these current densities, the entry of the cathode spot into a steady-state
regime occurs virtually instantaneously, while its transition from one steady state to another is virtually
cophasal with a change in current density [12, 13].

The limited lifetime of the cathode spot is now known as an experimental fact. The observed upper
limit regime which ends with the explosive effect explains this instability and thus determines the location
of the pinch effect.

The role of the latter in the zone of the cathode potential drop becomes significant only under condi-
tions in which the magnetic pressure Py, = uOuHZ/z exceeds the gas-kinetic pressure Pg = nkT, i.e., when
B = (Py /Pg) >1. Assuming that H=1/27r,n = (jo/eve) = je(2me /e%Ug)'/ 2, and carrying out the cor-
responding transformations, we find

B=42-107,r%T, (27)

where the current density jo =jo —§; ~Je. the cathode-spot radius r, and its temperature T must be ex-
pressed, respectively, A/cm?, pm,and °K. Having borrowed the data on the values of T for the copper
cathode from Fig. 2a and the data on j; and r from the experimental work [7], we find that the condition
B > 1 is entirely possible for a current density lower than the limit. This means that the pinch effect can
increase the current density to the limit level and to bring the cathode spot to the point of thermal explo-
sion.

In the light of these concepts, the instability of the cathode spot is thermal in nature. It begins its
existence with field emission, and ends its life with thermal field emission, evolving in the manner of an
E —ET — T emitter.

NOTATION
mg, my are the masses of the electron and the ion;
je» Jes di are the density of the cathode currents and its ion and electron components;
Ui, Ug are the ionization potential and the cathode potential drop;
gy, @ is the electron energy at the Fermi level and its work function;
k, Ly are the Boltzmann constant and the Lorentz number;
Ty is the ion temperature of the plasma in the zone of the cathode potential drop;
A, p, Vg, CV, Ty are, respectively, the thermal conductivity, the resistivity, the speed of sound, the

specific heat capacity at constant volume, and the specific volume heat of vapor for-
mation for the cathode substance;

E, H are the intensities of the electric and magnetic fields;

o is the magnetic constant of the vacuum.

LITERATURE CITED

S. 8. Mackeown, Phys. Rev., 34, 611 (1928).
2. L.W.Z. Nordheim, Phys., 30, No. 4, 177 (1928).

744



11.
12.
13.

W -3 D O B W

B

C)C)Qm

Barashov E. N. Gayrllovskaya, O. A. Malkin, and E. 8. Trekhov, Zh. Tekh. Fiz.,

.G.
. L.
. H.
.G.
.G.
.G.

. Andreev, Zh. Tekh. Fiz., 22, 9, 1428 (1952).

. Kesaev, Zh. Tekh. Fiz., 34, 8, 682 (1964).

. Goloveyko, Inzh. Fiz. Zh., 14, No. 3 (1968).
. Goloveyko, Inzh. Fiz. Zh., 15 No. 6 (1968).

Kesaev, Trudy VEI, No. 67 (1961).

Murphy and R. H. Good, Jr., Phys. Rev., 102, 6, 1464 (1956).

Good, Jr., J. Appl. Phys., 28, 12, 1405 (1958).
Goloveyko, Izv. Vuzov, Energetika, No. 6 (1966).
Goloveyko, Inzh. Fiz. ZI}., 12, No. 2 (1967).
Goloveyko, Izv. Vuzov, Energetika, No. 5 (1968).

10, 1853 (1965).

745



